
A True Random Number Generator Algorithm
From Digital Camera Image Noise
For Varying Lighting Conditions

Rongzhong Li
Departments of Computer Science and Physics

Wake Forest University
Winston-Salem, NC 27109
Email: rzlib2l@gmail.com

Abstract—We present a True Random Number Generator
(TRNG) using the images taken by web or mobile phone cameras.
We use all three RGB color channels to obtain the random num-
bers whereas previous studies used only one. We investigated the
physical and statistical properties of the random noise in a digital
photograph obtained by a camera system, and we made several
approximations to efficiently collect the best random signals from
the pixels in the images to map them to random sequences. In
short, the algorithm excludes each pixel’s saturated values to get
its unbiased bits. An additional transposing operation shuffles the
raw sequence to achieve better randomness. The final sequence
passes all of the NIST randomness tests. The algorithm involves
very few calculations and is especially suitable for smart phones.
With modern mobile cameras, it can work on the go and achieve
a fast bit rate. With readily available commodity hardware with
no hardware changes, we observe a random number generate
rate of 60 Mbps. A minor hardware optimization can result in a
rate of about 1 Gbps.

Keywords—RNG; mobile camera; Gaussian; noise; bitrate

I. INTRODUCTION

Randomness is the nature of our universe [1]. Random
number generation has become the basis of modern cryp-
tography [2] and random event simulations, such as weather
forecasting [3], Monte Carlo calculations [4], quantum me-
chanics calculations [5], and molecular simulations [6], [7].
Those applications all rely on the quality of random sequences
produced by the Random Number Generator (RNG).

The source of randomness can be physical, but they can
also be computational. For example, the kernel of Linux keeps
a physical entropy source pool and hash it to random numbers
[8]. Many mathematicians have developed their pseudo-RNG
algorithms based on complex mathematical theories [9].

With the development of digital ecosystems, apps for
mobile transactions now require fast and reliable algorithms
to generate random numbers. At the same time, the resolution
and speed of in-phone cameras have reached a sufficiently
high level that they can now perform as parallel random bits
generators and reduce the use of the precious CPU resources.
The idea of generating random numbers from images is not
new [10]. For example, Lavarand [11] takes pictures of lava
lamps and extracts random data from the floating material’s
pattern, but the bandwidth is low.

Previously, Sanguinetti et al. generated random numbers
using an LED on a mobile phone camera’s sensor [12]. The
quantum nature of the light source can generate random pho-
tons, and the camera sensor accurately captures the photons’
numbers to result in a set of random numbers. However, their
algorithm requires an LED paired with a good camera sensor,
a carefully tuned working environment, and may require a box
to isolate the whole system. We also notice that they use only
the green channel coupled with an LED even though red and
blue channels are available. Their speed is between 100Mbps
to 1Gbps. They claim their performance could be tripled by
utilizing all the 3 color channels, but it is unclear whether the
photons from 3 LEDs will interrupt each other when detected
by sensor. A more recent study by Duping Zhang et al. uses
the built-in flash lamp of a smart phone as the random source.
However their method requires the users’ conscious operations
[13].

In our present study, we instead utilize all types of noises
that exist in digital camera system. After investigating the
property of those noises, we make several simple but effective
approximations to fix the biased patterns in data. Then these
data are fed to a direct bitwise operation to generate random
0 or 1 bits. The bits are first stored in memory and then read
out in a certain order. Multiple sequences are generated under
different lighting conditions, and they have passed the standard
NIST Randomness Tests [14].

II. NOISE SOURCES IN CAMERA SENSORS

A naive use of the camera data is to put the brightness at
each point (pixel values) of the digital image into a sequence.
If the camera is pointing at a random scene, the sequence is
presumably random. However, for web cameras and especially
for cellphone cameras, the scenario can vary a lot. They can
be pointing to the laptop user, the still floor, or even thrown in
the pocket. Before we utilize the camera’s data, we must first
understand what we actually obtain from an image sensor. We
use an in-depth test below to show that the direct bit flow is
not actually random.

The actual brightness from the sensor’s pixel is:

b = bNF + noise

where b is the final brightness and bNF is the noise free
brightness. bnoise represents all the additive noises.



Fig. 1. Brightness and standard deviation histograms of digital photographs. The statistics on the left column are from pictures taken in a bright condition and
the ones on the right column are from pictures taken in a dark condition.

Shot noise (photon noise) comes from the quantum nature
of light and can be described by Poisson statistics. If the
incident light onto the camera sensor has a photon flux I ,
the total photon received by sensor during time t would be It,
while the noise signal will have a quantity of

√
It [15].

Dark noise Nd comes from the self-generated thermal
electrons within the sensor’s silicon layer. It also follows
Poisson statistics. The total noise during time t would be√
Ndt.

Read noise Nr comes from the chip’s reading process. It’s
a one-time noise only introduced during reading.

The total noise can be represented by
√
It+Ndt+N2

r ,
while the signal is It. So the Signal to Noise Ratio (SNR) is
given by It√

It+Ndt+N2
r

[16].

Camera manufacturers and photographers aim to increase
the SNR, but noises always exist to some degree. In good
lighting conditions, the noises are less noticeable, but even
covering the lens with fingers can show that the pixels are
fluctuating a lot. These noises, while not optimal for great
photographs, are actually welcomed in our algorithm because
they act as our physical entropy pool.

III. NOISE MODEL

The following image data and tests are based on a
ThinkPad T410 integrated camera, as well as an iPhone 5s
back camera. We expect similar results with any modern digital
cameras.

As shown in Fig. 1, the image histogram shows the
distribution of brightness in a single snapshot. As a simple
integrated camera, its aperture and frame rate are fixed. To
get a correctly exposed image, there is a built-in mechanism
to increase the sensitivity (ISO) under dark conditions and
decrease sensitivity under bright light. As a result, a typical
photo’s histogram should spread over shadow, middle, and
highlight regions. However, we may still get overexposure or
underexposure areas when shooting photos with both bright
and dark components. In this case, a brightness histogram will
have peaks at the extremes, and the corresponding pixels are
said to be ”saturated”. Notice the upper histograms in Fig. 1
are plotted by log10 Count, the saturated values are highly
populated.

Compared with brightness, the standard deviation of each
pixel has a smaller range. In a dark condition, the sensor will
increase sensitivity and lead to larger deviations, which creates
more uncertainty on each pixel. The majority of the standard
deviation ranges from 2 to 25. A few large standard deviations
may come from the subject’s movement before the camera. A
significant number of 0 standard deviations may result from
either dead pixels or saturated pixels. If we sum up the counts
at brightness 0 and 255, the total count approximately equals
the count of the 0 standard deviation cases.

The brightness probability distributions of representative
pixels in 600 frames are shown in Fig. 2 for both bright
and dark conditions. These sample pixels are randomly cho-
sen at prime numbers. They can be approximated by their
corresponding normal distribution probability density function
(PDF) with parameters (µ, σ). However, the fitting will fail



Fig. 2. Brightness probability distributions for 600 frames at representative pixels. The images used to generated the probability distributions on the left column
are taken in a bright condition and the ones used for the probability distributions on the right column are taken in a dark condition.

at the two extremes when their counts all accumulate at the
boundary values.

The overall behavior of the noises is usually modeled as
Additive Zero Mean Gaussian Noise (AWGN) [17]:

PDF(x, µ, σ) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
where x is the observable, µ is the mean value, and σ is the
standard deviation of the distribution.

The mean value µ can be treated as the noise free bright-
ness bNF , while the noise is added to the base brightness. So
the PDF(noise, 0, σ) becomes PDF(b, bNF , σ), which inherits
the noise’s statistical properties.

We can derive random bits from the values of a distribution
as shown in Fig. 3. If the random bit depth is 3, we can get
the last 3 binary digits from the brightness. The mathematical
expectation of the last bit’s value is:

E(bit) =
µ+4σ∑
b=µ−4σ

PDF(b, µ, σ)(b mod 2)

Assuming a Gaussian PDF, 99% of the samples should be
in the range (µ−3σ, µ+3σ). When calculating the summation,
the range from µ − 4σ to µ + 4σ is sufficient to obtain the
characteristic ”bell” shape. For small σ, the summation is
replaced by integration during numerical evaluation.

Ideally, all of the pixels should generate unbiased random
bits. We would expect µ = 0.5 from a perfect normal

Fig. 3. A normal Gaussian distribution mapped to binary digits. The Gaussian
PDFs are shown for µ = 3, σ = 0.5, 1.0, 2.0. The last binary bits of the
brightness are shown below the decimal numbers. The black dots represent
each standard deviation, σ

distribution with symmetric range. But it is not always the case
in digital cameras with limited dynamic range. Values outside
the range are clipped to the boundary values. When calculating
the summation, the clipped brightness bclipped takes the form:

bclipped(b) =


b 0 ≤ b ≤ 255

0 b < 0

255 b > 255



Fig. 4. The shifted mean brightness and standard deviations from clipped
brightness. µ ranges from -10 to 265. The vertical axis is plotted by

√
σ ,

while σ = 0.5, 1, 2, 3, 4, 6, 8. These ideal Gaussian distribution’s (µ, σ) are
shifted to the observed values we obtain from the digital camera images.

The shifted expectation value then becomes:

Eshifted(bit) =
µ+4σ∑
b=µ−4σ

PDF(b, µ, σ)(bclipped(b) mod 2)

Due to the clipping, all the excessive probabilities are
added up to the boundary value. The actual mean brightness
and standard deviation are shifted from the ideal Gaussian
distribution’s (µ, σ). We can calculate the (µshifted, σshifted):

µshifted =

µ+4σ∑
b=µ−4σ

bclipped(b)PDF(b, µ, σ)

σshifted =

√√√√ µ+4σ∑
b=µ−4σ

(bclipped(b)− µshifted) 2PDF(b, µ, σ)

The (µshifted, σshifted) of an ideal PDF(b, µ, σ) are plotted
in Fig. 4.

We can now calculate the Eshifted and (µshifted, σshifted)
of an ideal distribution. Their relationship is shown in Fig. 5.
The expectation between 0.4995 and 0.5005 are marked gray,
which allows a bias of 0.0005

0.5 = 1
1000 . In general, the gray

dots form an unbiased trapezoid region (UTR) as a function
of (µ, σ), surrounded by the biased bottom region (BBR) and
biased side region (BSR).

BBR comes from extremely small σ (caused by low ISO
for bright conditions) that can’t provide enough random infor-
mation on the required bit depth. With current error allowance
of 1

1000 , the bottom border can be approximated by:

σmin ≥
2depth

1.4

BSR comes from broken symmetry and excessive probabil-
ities on the saturated pixel values. With current error allowance
of 1

1000 , the side borders can be approximated by:

σside(µ) =


µ
3 0 ≤ µ < 127.5

255−µ
3 127.5 ≤ µ ≤ 255

Fig. 5. The relationships between the raw expectation, shifted mean
brightness, and shifted standard deviations. µ ranges from -65 to 320. The
vertical axis is plotted using

√
σ. The border of the center region should be

straight in the linear axis. Values between 0.4995 and 0.5005 are marked gray.
Dashed lines show the fitted borders for normal σ.

To obtain unbiased data, we have to pick out the pixels
belonging to the unbiased region.

IV. APPROXIMATIONS FOR EFFICIENTLY SELECTING
UNBIASED PIXELS

Since the theoretical unbiased region has been defined, in
principle, we can pick out the pixels by their (µ, σ) value.
However, both µ and σ are statistical properties that require
data from multiple frames. These values require a significant
amount of time to collect, which can impede performance,



Fig. 6. Scatter plot (top) with corresponding density plot (bottom) of standard
deviation of mean brightness of pixels from 20 frames . The dashed lines mark
the extreme σ and µ values.

and the camera may also move and result in the change of its
pixels’ (µ, σ) values. Also, the Point-In-Polygon (PIP) decision
is another expensive calculation [18].

Some empirical approximations can be made by observing
the property of the (µ, σ) scatter plot in 20 frames from a
real world camera, as shown in Fig. 6. All of the pixels from
the sensor from the red channel are plotted by their (µ, σ)
coordinates. The corresponding density plot shows the relative
probability of each conformation. The green and blue channels
shows similar features that lead to the same conclusions.

Both small and large σ are quite rare. Large σ can happen
at any µ, while extremely small σ only happens at the boundary
values. This is because any fluctuation outside the range
will be counted as the saturated boundary values. Recall the
relationship between µ and σ in Fig. 4, we can merge it with
Fig. 6. The result in Fig. 7 shows that extremely small σ can
be excluded by reducing the range of µ we use.

However, discarding the boundary values will result in their
probability of visit becoming 0, and the total probability is
no longer 1. Therefore, we must renormalize the expectation
value, which becomes the ensemble average, such that the
clipped probability density function takes the form:

PDFclipped(b, µ, σ) =


PDF(b, µ, σ) min ≤ b ≤ max
0 b < min

0 b > max

where min can be some small values (e.g., 1 ∼ 5) and max =
255−min, so that the range is symmetric.

Fig. 7. The scatter plot with shifted (µ, σ) superimposed with Fig. 4. The
(µ, σ) in the earlier scatter plot are actually shifted. The extremely low σ
from the signal source are quite rare, and most of them are near the boundary
and come from the clipping effect. See text for additional details.

The ensemble average of the last digit is calculated by:

< bit >=

∑µ+4σ
b=µ−4σ PDFclipped(b, µ, σ)(bclipped(b) mod 2)∑µ+4σ

b=µ−4σ PDFclipped(b, µ, σ)

The recalculated ensemble averages of some last digits are
shown in Fig. 8. Note that the shifted µ and σ plays a role
as the index of pixels, so they are not recalculated for the
new figure. A more complete combination set can be found in
supplementary materials.

Though the main purpose of last operation is to avoid the
BBRs near boundaries, the new BSRs are also significantly
weakened compared to the original BSRs. The largest biased
area used to be at the top left/top right corner (Fig. 5), but
now they are shifted to the tiny bottom corners(Fig. 8). The
bottom border is not affected, while the new side boarder of
BSR can be approximated by:

σside(µ) =


µ−min

2 0 ≤ µ < 127.5

255−µ−min
2 127.5 ≤ µ ≤ 255

Further reducing the brightness range does not significantly
exclude the BSR, and doing so discards too many usable
pixels. We therefore chose the range between 2 and 253 in
our subsequent analyses and in our algorithm. Fig. 9 shows
the mean value of the last bit in 20 sample frames, and we
observe that the bias is reduced significantly by discarding the
boundary values. To decide how many random bits to get from
one pixel, we can use the derived relationship:

depth ≤ 1.4 log2 σmin

and Table I shows the minimum σ required for certain depth
of unbiased random bits.

As discussed before, the standard deviation depends on
sensitivity, which is adjusted to the lighting condition by the
camera’s driver. The driver has a mechanism to tune the
sensitivity with brightness, i.e. change σ with average µ of
the whole image. A versatile choice should adapt to different
lighting conditions by pre-calculating the average µ of the
image.

However, since a camera can always move, we may have
to average the image’s brightness from time to time. A



Fig. 8. The relationships between the new expectation, shifted mean
brightness, and shifted standard deviations after discarding the different sets
of boundary values. µ ranges from -65 to 320. The vertical axis is plotted
using

√
σ. Values between 0.4995 and 0.5005 are marked gray. Dashed lines

show the fitted borders for normal σ.

TABLE I. RESTRICTION TABLE

depth 1 2 3 4 5
σmin 1.43 2.86 5.71 11.43 22.86

conservative approach is simply using only the last bit to meet
all the situations to obtain values from most of the pixels. A
more liberal approach is to obtain values from the last 3 or
4 bits, but the standard deviation has to be large and is only
practical in dark conditions. Considering the environment of
the camera may be unpredictable and change significantly, we
only use the last bit in our algorithm to ensure the highest

Fig. 9. The mean value of last bit in 20 sample frames. After discarding
boundary brightness, the bias is reduced significantly. Note the shifted µ and
σ plays a role as the index of pixels, so they are not recalculated for the
second graph.

quality of randomness of our values in any lighting conditions
even though we are intentionally limiting the number of bits
we could obtain.

V. ALGORITHM PSEUDO CODE

We now present our general algorithm for obtaining ran-
dom numbers from images obtained by a digital camera that
utilizes all three RGB channels. We use a digital camera to
obtain multiple images. For each image, we select out the
pixels with brightness ranging from 2 to 253 (excluding the
boundaries). We continue this loop for each image until the
desired number of random numbers are obtained. All of the
bits from one frame become a sublist of the total sequence.

However the raw sequence is not perfectly random. There
exists a BSR for each frame. When the image is not well
exposed, the bias can be large in each frame. Also, some
blocking features still remained even if the pixels’ positions
are shifted after picking. An assistant randomness extractor
may solve these problems, but it’s not rooted in the algorithm
itself and requires extra calculations. After several trial and
errors, we found a neat solution to achieve randomness within
the algorithm.

Since the algorithm is supposed to continuously take pic-
tures within short time intervals, we can flip the bits every
two frames. To spread the fix evenly over the whole sequence,
we shuffle the sequence by writing in row-major order then
reading in column-major order as a square matrix. The matrix
dimension is b

√
RequiredLengthc. Excessive bits from the

last frame are appended to the tail to hide the dimension
information. Because the usable pixels always change in each
frame, this simple operation introduces extra randomness.

Below is the pseudo-code of the algorithm:



Algorithm 1 A pseudo-code for the RNG
Initialize the camera and set variables
Allocate square array
Timing start;
Generation:
while (NumSoFar < NumNeeded) do

Take one snapshot; . C1
Pick out the brightness ∈ [2, 253]; . O(N)
Take the last bits as a SubList; . O(N)
If (Frame is even) flip the bits in SubList; . O(N)
Add SubList to FinalList in row-major order; . C2
NumSoFar = NumSoFar + SubList.Length; . C3

end while
Output:
Print in column-major order; . O(N)
Extra bits are appended to the tail of the sequence; . C4
Timing end;

The overall time complexity of the algorithm is in O(N).
We note that since the operation within each frame can be done
in parallel, if implemented properly on a parallel architecture,
such as a GPU, the performance can be reduced to between
O(
√
N) and O(N).

Depending on different architecture, the slowest operation
should be put into the interval between each frame. The order
of transposing (row-major order to column-major) operation
can be switched for the best performance. Fig. 10 illustrates
our algorithm generating a set of random numbers using all 3
RGB channels.

VI. IMPLEMENTATION AND PRACTICAL PERFORMANCE

The algorithm is implemented both in Wolfram Mathe-
matica 9.0 [19] and C++, using different camera models. The
source codes are available at request.

The Mathematica code is run on a ThinkPad T410 laptop
with an integrated camera and Windows 7 OS. The resolution
is 640×480 with 3 RGB channels. The color depth is 8, which
provides a dynamic range from 0 to 255. The ISO is controlled
by the manufacturer’s driver and can adjust to environment’s
brightness. The default frame rate is 12. All other parameters
are kept at their default values.

The C++ code is run on an Ubuntu 12.10 Desktop. Images
are taken by an iPhone5S in burst mode. The resolution is
3264× 2448 with 3 RGB channels. The color depth is 8, and
the ISO ranges from 500 to 2500. Frame rate of burst mode
is 10. All other parameters are kept at their default values.

The figures appeared in modeling section were generated
using the Thinkpad’s integrated camera at resolution 320 ×
240. Bright conditions are under daylight, fluorescent lamp, or
incandescent lamp. Dark conditions are in a dark room with a
distant lamp, the reflected screen backlight, or simply covering
the camera in bright conditions.

We generated 20× 108 bits sequences with a total size of
2G bits. The sequences are fed to standard NIST Randomness
Test [14], which divides each sequence into 1000 subsequences
then run 15 independent tests. Our sequences passed all the
tests.

Fig. 10. Illustration of RNG algorithm. 50 random bits are requested. The
sensor size is 3× 2 with all 3 RGB channels. Black pixels indicate that those
are boundary values and therefore are discarded.

The speed of the algorithm can be written as:

speed =
width× height× channels× depth

max(Tprocessing,
1

framerate )

where the depth is the longest unbiased digits we can obtain
per pixel. If working on a smart phone’s 8 MP camera
(3264 × 2448) with 3 color channels, taking just 1 bit from
each channel, setting the frame rate to be 10, with all pix-
els are exposed properly, and assuming that the calculation
can finish within two frames, the expected speed will be
3264×2448×3×1

1
10

1
106 = 240Mbps. In practice, the 0.3 MP web

camera has a speed of 1.6 Mbps, and the iPhone5S’s 8 MP
camera has a speed of 60 Mbps.

We next attempted to analyze the source of the discrepancy
between the theoretical and empirical rates. Unfortunately, the
Mathematica code uses some built-in function calls, and it is
unclear how Mathematica actually implements those functions
and likely has significant unrelated overhead issues. However,
the C++ implementation pre-initializes a pointer array W in



row-major order. Each W’s element points to an array R’s
element in column-major order. The last bits are acquired by
BitAnd operation. The data can be written to W during each
frame interval, so it can be read from R directly in the final
step. According to the C++ code, most of the operations can
finish between the frame intervals except the row-major order
to column-major order transform operation. If we consider the
operation as a part of I/O, the random number generation speed
will reach 200 Mbps, which approaches the theoretical speed.

The major bottleneck of the algorithm is the small σ
existing in the signal source that limits the number of unbiased
random digits per pixel. If a perfectly random number is not
necessary, 3 bits per pixel can be used with relatively small
reduction in the quality of the random numbers while tripling
the speed. In the end, it is a balance between the speed and
quality of the random numbers generated by our algorithm.

The algorithm looks optimal under dark conditions, for
the majority of σ will increase (higher ISO). The quality of
randomness will drop if the driver decides to use very low
ISO for bright conditions. If we directly optimize the driver to
always use high ISO for the RNG, we would get more than 1
bit per pixel. The shutter time can also drop to maintain the
optimal ISO×ShutterT ime, which allows for a faster frame
rate. In our present implementation, according to Table. I, if
we tune the σmin > 2.86, we can obtain two bits per pixel,
while the frame rate can be doubled. In the end we can obtain
4× speedup and reach a rate of 1 Gbps.

However, the shutter time cannot be too short or the
shot noise and dark noise will not accumulate enough, and
only the read noise will dominate the signal. The sustain-
able brightness level varies on different cameras. The setting
configuration of (Aperture, ISO, ShutterTime) is the main
factor to affect an image’s exposure. A bright condition
requires less exposure while a dark condition requires more
exposure. The algorithm will fail in both quality and speed
if the configuration (Aperturemin, ISOmin,ShutterTimemin)
or (Aperturemax, ISOmax,ShutterTimemax) returns a mostly
bright or mostly dark image, respectively. An ideal working
condition is pointing the camera towards a perfectly random
photon source, and tuning the brightness within the camera’s
dynamic range. The algorithm then basically converges to the
previously discussed Bruno’s method [12].

VII. CONCLUSIONS

The disadvantage of digital camera as a source of random
numbers lies in the biased patterns in images and its blocked
sensor units. A raw sequence without further processing may
have a fixed-pattern noise. In our present study, we introduce
an algorithm that utilizes pixels from all three RGB color
channels to obtain a set of random numbers. The algorithm
obtains the last few bits affected by noises, and they are
essentially free from the scenery bias. The blocked features
from the sensor are fixed by bit flipping and transposing
the data as a matrix. Because the usable pixel length always
changes for each frame, this method provides a shuffling effect
that results in a better quality of randomness.

There are several benefits from this algorithm. First, the
algorithm relies on the Gaussian property of noise signals
rather than the model of camera. It can work on most existing

devices with a digital camera. Second, there’s no special
requirement for accessories or working conditions. Third, the
algorithm generates true random numbers directly, while keeps
the calculation neat and easy to implement both in software
and hardware. Smart phone app developers can readily adopt
this algorithm.

ACKNOWLEDGMENT

The author would like to thank Prof. Sam Cho and Prof.
David John for their valuable suggestions and careful revi-
sions. The author also appreciates the initial stimulation and
encouragement from Suxuan Wang to pursue this study.

REFERENCES

[1] Hector Zenil. Randomness Through Computation: Some Answers, More
Questions. World Scientific, 2011.

[2] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal
of Computer and System Sciences, 28(2):270–299, 1984.

[3] David B Stephenson, Valentina Pavan, and Roxana Bojariu. Is the
north atlantic oscillation a random walk? International Journal of
Climatology, 20(1):1–18, 2000.

[4] Reuven Y Rubinstein and Dirk P Kroese. Simulation and the Monte
Carlo method, volume 707. John Wiley & Sons, 2011.

[5] Julia Kempe. Quantum random walks: an introductory overview.
Contemporary Physics, 44(4):307–327, 2003.

[6] Martin Karplus and J Andrew McCammon. Molecular dynamics
simulations of biomolecules. Nature Structural and Molecular Biology,
9(9):646–652, 2002.

[7] Jessica D Leuchter, Adam T Green, Julian Gilyard, Cecilia G Rambarat,
and Samuel S Cho. Coarse-grained and atomistic md simulations of rna
and dna folding. Israel Journal of Chemistry, 2014.

[8] Z. Gutterman, B. Pinkas, and T. Reinman. Analysis of the linux random
number generator. In Security and Privacy, 2006 IEEE Symposium on,
pages 15 pp.–385.

[9] George Marsaglia. Random number generators. Journal of Modern
Applied Statistical Methods, 2(1), 2003.

[10] Anthony J Martino and G Michael Morris. Optical random number
generator based on photoevent locations. Applied optics, 30(8):981–
989, 1991.

[11] L.C. Noll, R.G. Mende, and S. Sisodiya. Method for seeding a pseudo-
random number generator with a cryptographic hash of a digitization
of a chaotic system, 1998.

[12] Bruno Sanguinetti, Anthony Martin, Hugo Zbinden, and Nicolas Gisin.
Quantum random number generation on a mobile phone. arXiv preprint
arXiv:1405.0435, 2014.

[13] Xuping Zhang, Li Qi, Zhiqiang Tang, and Yixin Zhang. Portable true
random number generator for personal encryption application based on
smartphone camera. Electronics Letters, 50(24):1841–1843, 2014.

[14] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, and Elaine
Barker. A statistical test suite for random and pseudorandom number
generators for cryptographic applications. Technical report, DTIC
Document, 2001.

[15] Y Reibel, M Jung, M Bouhifd, B Cunin, and C Draman. Ccd or cmos
camera noise characterisation. The European Physical Journal Applied
Physics, 21(01):75–80, 2003.

[16] David Dussault and Paul Hoess. Noise performance comparison of iccd
with ccd and emccd cameras. In Optical Science and Technology, the
SPIE 49th Annual Meeting, pages 195–204. International Society for
Optics and Photonics.

[17] Angelo Bosco, Arcangelo Bruna, Giuseppe Messina, and Giuseppe
Spampinato. Fast method for noise level estimation and integrated noise
reduction. Consumer Electronics, IEEE Transactions on, 51(3):1028–
1033, 2005.

[18] Kai Hormann and Alexander Agathos. The point in polygon problem
for arbitrary polygons. Computational Geometry, 20(3):131–144, 2001.

[19] S Wolfram. Mathematica edition: Version 9.0. 2012.


